Ikke-euklidisk geometri

Einsteins relativitetsteori var ikke blevet til uden. Og beskrivelserne af astro- og partikelfysiske fænomener ville være langt dårligere. Omkring 1830 gjorde matematikere en opdagelse, der revolutionerede det klassiske fysiske verdensbillede: De opdagede, at der findes plane geometrier, hvor der igennem et vilkårligt punkt uden for en given linje går uendeligt mange linjer parallelt med den givne linje, samtidigt med at geometrierne besidder de andre grundlæggende geometriske egenskaber formuleret af Euklid mere end 2000 år tidligere. De såkaldte ikke-euklidiske geometrier er en af de mest fascinerende og overraskende intellektuelle konstruktioner, som menneskeheden har udtænkt, og også i dag påkalder de ikke-euklidiske geometrier sig betydelig interesse. I foredraget beskrives den ikke-euklidiske geometri i Poincarés cirkelskive-model af den hyperbolske plan.

Praktiske oplysninger

Forudsætninger:

Matematik og/eller fysik på A-niveau.

Udbydes i perioden:

1/9 - 30/6

Tidsforbrug:

60 minutter.

Materialer:

Som forberedelse læses ariklen: Vagn Lundsgaard Hansen: Ikke-euklidisk geometri i støbeskeen; i "Matematiske Essays" (red. S.T. Jensen & J. Matthiasen), Matematiklærerforeningen, 1995, 47-73

Tilbydes følgende dage:

Mandage, tirsdage, onsdage, torsdage og fredage

DTU-lærer:

Vagn Lundsgaard Hansen
E-mail: vlha@dtu.dk
Institut: Institut for Matematik og Computer Science
Telefon: 45253039

Bestillingsansvarlig:

Lene Matthisson
E-mail: lemat@dtu.dk
Institut: Institut for Matematik og Computer Science
Telefon: 45253377

Søgning

Vælg relevante fag







 
Vælg ønsket periode
Fra
Til
 
Angiv relevante dage





Angiv antal deltagere