Mikkel Nørgaard Schmidt

Mikkel Nørgaard Schmidt

Associate Professor

DTU COMPUTE
Department of Applied Mathematics and Computer Science

Technical University of Denmark

Richard Petersens Plads

Building 321, room 116

2800 Kgs. Lyngby

Home page

Request a vCard via e-mail.

Publications
Projects
Courses
CV
Loading

Publications rss feed

2017
 

Difference-of-Convex optimization for variational kl-corrected inference in dirichlet process mixtures

Bonnevie, Rasmus ; Schmidt, Mikkel Nørgaard ; Mørup, Morten
part of: Proceedings of 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pages: 1-6, 2017, IEEE
Presented at:
2017 IEEE international workshop on machine learning for signal processing

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1109/MLSP.2017.8168159

  PDF

Examination of heterogeneous societies: Identifying subpopulations by contrasting cultures

Glückstad, Fumiko Kano ; Schmidt, Mikkel Nørgaard ; Mørup, Morten
in: Journal of Cross-Cultural Psychology, vol: 48, issue: 1, pages: 39– 57

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1177/0022022116672346

  PDF

Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data

Røge, Rasmus ; Madsen, Kristoffer Hougaard ; Schmidt, Mikkel Nørgaard ; Mørup, Morten
in: Neural Computation, vol: 29, issue: 10, pages: 2712-2741, 2011

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1162/neco_a_01000

  PDF

Modeling dynamic functional connectivity using a wishart mixture model

Nielsen, Søren Føns Vind ; Madsen, Kristoffer Hougaard ; Schmidt, Mikkel Nørgaard ; Mørup, Morten
part of: Proceedings of the 2017 International Workshop on Pattern Recognition in Neuroimaging, pages: 1-4, 2017, IEEE
Presented at:
2017 International Workshop on Pattern Recognition in Neuroimaging

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1109/PRNI.2017.7981505

 

Scalable group level probabilistic sparse factor analysis

Hinrich, Jesper Løve ; Nielsen, Søren Føns Vind ; Riis, Nicolai Andre Brogaard ; Eriksen, Casper ; Frøsig, Jacob ; Kristensen, Marco D. F. ; Schmidt, Mikkel Nørgaard ; Madsen, Kristoffer Hougaard ; Mørup, Morten
part of: Proceedings of 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, pages: 6314-6318, 2017, IEEE
Presented at:
42nd IEEE International Conference on Acoustics, Speech and Signal Processing

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1109/ICASSP.2017.7953371

 

Whole-brain functional connectivity predicted by indirect structural connections

Røge, Rasmus ; Ambrosen, Karen Marie Sandø ; Albers, Kristoffer Jon ; Eriksen, Casper Tabassum ; Liptrot, Matthew George ; Schmidt, Mikkel Nørgaard ; Madsen, Kristoffer Hougaard ; Mørup, Morten
part of: Proceedings of 2017 International Workshop on Pattern Recognition in Neuroimaging , pages: 4 pp., 2017, IEEE
Presented at:
2017 International Workshop on Pattern Recognition in Neuroimaging

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2017     |    DOI: https://doi.org/10.1109/PRNI.2017.7981496

2016
 

Bayesian latent feature modeling for modeling bipartite networks with overlapping groups

Jørgensen, Philip H. ; Mørup, Morten ; Schmidt, Mikkel Nørgaard ; Herlau, Tue
part of: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2016), 2016, IEEE
Presented at:
26th IEEE International Workshop on Machine Learning for Signal Processing

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2016     |    DOI: https://doi.org/10.1109/MLSP.2016.7738845

  PDF

Completely random measures for modelling block-structured sparse networks

Herlau, Tue ; Schmidt, Mikkel Nørgaard ; Mørup, Morten
part of: Advances in Neural Information Processing (NIPS 2016), 2016, Neural Information Processing Systems Foundation
Presented at:
29th Annual Conference on Neural Information Processing Systems (NIPS 2016)

Type: Article in proceedings (Peer reviewed)

Status: Published     |    Year: 2016