Filipe Rodrigues

Filipe Rodrigues

Associate Professor

DTU MANAGEMENT
Department of Technology, Management and Economics

Transport Division
Transport Machine Learning

Technical University of Denmark

Bygningstorvet

Building 116, room 121A

2800 Kgs. Lyngby

Home page

Request a vCard via e-mail.

Publications
Projects
Activities
Courses
Loading

Publications rss feed

2020
 

A Machine Learning Approach to Censored Bike-Sharing Demand Modeling

Gammelli, Daniele ; Rodrigues, Filipe ; Pacino, Dario ; Kurtaran, Haci Ahmet ; Pereira, Francisco Camara
in: Transportation Research Board. Annual Meeting Proceedings

Type: Journal article (Peer reviewed)

Status: Accepted/In press     |    Year: 2020

  PDF

Deep Survival Modelling for Shared Mobility

Kostic, Bojan ; Loft, Mathilde Pryds ; Rodrigues, Filipe ; Borysov, Stanislav ; Pereira, Francisco Camara
in: Danish Journal of Transportation Research - Dansk tidskrift for transportforskning

Type: Conference abstract in journal (Peer reviewed)

Status: Published     |    Year: 2020     |    DOI: https://doi.org/10.5278/ojs.td.v27i1.6166

 

Gaussian Mixture Models Meet Econometric Models

Sfeir, Georges ; Abou-Zeid, Maya ; Rodrigues, Filipe ; Pereira, Francisco Camara
in: Transportation Research Board. Annual Meeting Proceedings

Type: Journal article (Peer reviewed)

Status: Accepted/In press     |    Year: 2020

 

Is Travel Demand Actually Deep? An Application in Event Areas Using Semantic Information

Markou, Ioulia ; Rodrigues, Filipe ; Pereira, Francisco Camara
in: I E E E Transactions on Intelligent Transportation Systems, vol: 21, issue: 2, pages: 641-652

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2020     |    DOI: https://doi.org/10.1109/TITS.2019.2897341

2019
 

A Two-Stage Model for Real-time Taxi Demand Prediction Using Data from the Web

Markou, Ioulia ; Pereira, Francisco Camara ; Rodrigues, Filipe
part of: Proceedings of the Transportation Research Board 98th Annual Meeting, 2019
Presented at:
The Transportation Research Board (TRB) 98th Annual Meeting

Type: Conference abstract in proceedings (Peer reviewed)

Status: Published     |    Year: 2019

  PDF

Combining time-series and textual data for taxi demand prediction in event areas: a deep learning approach

Rodrigues, Filipe ; Markou, Ioulia ; Pereira, Francisco Camara
in: Information Fusion, vol: 49, pages: 120-129

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2019     |    DOI: https://doi.org/10.1016/j.inffus.2018.07.007

 

Multi-output bus travel time prediction with convolutional LSTM neural network

Petersen, Niklas Christoffer ; Rodrigues, Filipe ; Pereira, Francisco Camara
in: Expert Systems with Applications, vol: 120, pages: 426-435

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2019     |    DOI: https://doi.org/10.1016/j.eswa.2018.11.028

  PDF

Multi-output Deep Learning for Bus Arrival Time Predictions

Petersen, Niklas Christoffer ; Rodrigues, Filipe ; Pereira, Francisco Camara
in: Transportation Research Procedia, vol: 41, pages: 138-145
Presented at:
International Scientific Conference on Mobility and Transport Urban Mobility

Type: Conference article (Peer reviewed)

Status: Published     |    Year: 2019     |    DOI: https://doi.org/10.1016/j.trpro.2019.09.025

  PDF

Multi-Output Gaussian Processes for Crowdsourced Traffic Data Imputation

Rodrigues, Filipe ; Henrickson, Kristian ; Pereira, Francisco C.
in: I E E E Transactions on Intelligent Transportation Systems, vol: 20, issue: 2, pages: 594 - 603

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2019     |    DOI: https://doi.org/10.1109/TITS.2018.2817879

  PDF

Multi-step ahead prediction of taxi demand using time-series and textual data

Markou, Ioulia ; Rodrigues, Filipe ; Pereira, Francisco Camara
in: Transportation Research Procedia, vol: 41, pages: 540-544
Presented at:
International Scientific Conference on Mobility and Transport Urban Mobility

Type: Journal article (Peer reviewed)

Status: Published     |    Year: 2019     |    DOI: https://doi.org/10.1016/j.trpro.2019.09.094